CLOSE WITH Confidence

Duramesh redefines the standard for closure. Its innovative large-pore mesh design leverages force distribution and tissue integration, providing a durable and reliable solution for surgical repairs.

Strong from the Start

The mesh filament structure distributes tension evenly at the suture-tissue interface and along the incision line, much like the small bites technique, thus reducing the risk of cheesewiring and tissue trauma.

USP 1 Monofilament Suture

Mesh Suture

Durable Over Time

The large pores stay open, even under tension, to allow rapid tissue incorporation of the mesh structure, thus minimizing migration for a stronger, more integrated repair.^{4,5}

Simple Surgical Technique

A full range of suture sizes and needles ensures surgeons can continue using familiar methods in both running and interrupted fashion.⁵

DURAMESH[™] is the first and only closure device that facilitates tissue approximation and incorporation to help surgeons close with confidence.

Demo Duramesh Today!

eurosurgical.co.uk Merrow Business Centre. Guildford.

Merrow Business Centre, Guilatora, Surrey GU4 7WA, United Kingdom +44 (0) 1483 456 007 | sales@eurosurgical.co.uk

A: Graphical representation only; not representative of filament size or pore size B: Fits in an 8mm trocar C: Does not meet USP for diameter. DURAMESH[™] is a trademark of Mesh Suture Inc. | © 2024, Mesh Suture, Inc.

DURAMESH by MSi

non-absorbable polypropylene mesh suture

Rethink Closure

While surgical technology has evolved rapidly, sutures have remained unchanged.

Under tension, sutures can cheesewire through tissues, leading to serious complications, significantly impacting patient outcomes and healthcare costs.

COMPLICATIONS

	Recurring Herni
¢	Dehiscence
$\mathbf{>}$	Evisceration

Incisional Hernia

Tendon Rupture

DID YOU KNOW?

22%¹ to 52%²

of patients develop incisional hernias within 1 to 3 years post-op

63%³

of hernia repairs fail within 10 years when using traditional sutures

Difference

Low Early Complication Rates

Duramesh demonstrates lower early complication rates compared to similar case series in the literature.⁸

Broad Surgical Application

Duramesh can be used across a wide variety of cases where sutures commonly fail and meshes lead to complications.⁸

Measuring Performance Against Standard Sutures

100% more resistance to pull-through^{7*}

9X more surface area⁵

75% more tensile elasticity⁶

2x_{stronge}

PROPRIETARY MACROPOROUS

STRUCTURE

repair at day 84

*When compared to a standard suture in a human finger tendon model

REFERENCES

1. C Fink, P Baumann, M N Wente, P Knebel, T Bruckner, A Ulrich, J Werner, M W Büchler, M K Diener, Incisional hernia rate 3 years after midline laparotomy, British Journal of Surgery, Volume 101, Issue 2, January 2014, Pages 51–54, https://doi.org/10.1002/bjs.9364.
2. Wehrle CJ, Shukla P, Miller BT, Blake KE, Prabhu AS, Petro CC, Krpata DM, Beffa LR, Tu C, Rosen MJ. Incisional hernia rates following midline laparotomy in the obese patient: a retrospective review. Hernia. 2023 Jun;27(3):557-563. doi: 10.1007/s10029-022-02688-6. Epub 2022 Nov 1. PMID: 36318389.
3. Burger JW, Luijendijk RW, Hop WC, Halm JA, Verdaasdonk EG, Jeekel J. Long-term follow-up of a randomized controlled trial of suture versus mesh repair of incisional hernia. Ann Surg. 2004 001;27(8-83; discussion 583-5. doi: 10.1097/01.sla.0000141193.0B524.e7. PMID: 15383785; PMCID: PMC1356459.
4. G A Dumanian, A Tulaimat, Z P Dumanian, Experimental study of the characteristics of a novel mesh suture, British Journal of Surgery, Volume 102, Issue 102, Issue 103, September 2015, Pages 1285-1292, https://doi.org/10.1002/bjs.9853.
5. Internal product testing.
6. Wallace SJ, Mioton LM, Havey RM, Muriuki MG, Ko JH. Biomechanical Properties of a Novel Mesh Suture in a Cadaveric Flexor Tendon Repair Model. J Hand Surg Am. 2019 Mar;44(3):208-215. doi: 10.1016/j.jhsa.2018.11.016. Epub 2019 Jan 16. PMID: 30660397.
7. Wallace SJ, Mioton LM, Havey RM, Muriuki MG, Ko JH. Biomechanical Properties of a Novel Mesh Suture in a Cadaveric Flexor Tendon Repair Model. J Hand Surg Am. 2019 Mar;44(3):208-215. doi: 10.1016/j.jhsa.2018.11.016. Epub 2019 Jan 16. PMID: 30660397.
8. Shapiro M, Hackenberger PN, Mittal M, Fronza J, Duramesh registry study: short-term outcomes using mesh suture for abdominal wall closure. Front Surg. 2024 Jan 11;10:1321146. doi: 10.3389/fsurg.2023.1321146.
M Kate Markenberger PN, Mittal M, Fronza J, Duramesh registry study: short-term outcomes using mesh suture for abdominal wall closure. Fro